Protection ## California Regional Water Quality Control Board ## North Coast Region William R. Massey, Chairman Internet Address: http://www.swrcb.ca.gov/rwqcb1/ 5550 Skylane Boulevard, Suite A, Santa Rosa, California 95403 Phone: 1 (877) 721-9203 (toll free) • Office: (707) 576-2220 • FAX: (707) 523-0135 July 23, 2003 Mr. Raj Sandhu United States Army Corps of Engineers 1325 J Street Sacramento, CA 95814 Dear Mr. Sandhu: Subject: Request for a Technical Report on Emergent Chemical Sources and Sampling for the Former Santa Rosa Naval Auxiliary Air Station File: Santa Rosa Naval Auxiliary Air Station, Finley Avenue, Santa Rosa, California Case No. 1TSO547 Staff of the California Regional Water Quality Control Board (Regional Water Board) requests your assistance in identifying potential sources of emergent chemicals of concern in soil, groundwater and/or surface water. The emergent chemicals include perchlorate, n-nitrosodimethylamine (NDMA), 1,4-dioxane, 1,2,3-trichloropropane, chromium VI, and polybrominated diphenyl ether (PBDE). These emergent chemicals have acute to chronic health effects in humans, even those found at very low concentrations, i.e. nanograms/Liter (parts per trillion (ppt)). In addition, some of these chemicals are suspected carcinogens. Former and active military facilities need to be assessed for the presence of emergent chemicals at any potential areas of concern (AOC), installation restoration (IR) and operable unit (OU) sites within the facility which include, but are not limited to: California Environmental Protection Agency - 4. A brief description of the methodology proposed to be used to collect the soil and/or water samples, and; - 5. A schedule for sampling soils, surface waters and wells. The following table lists the emergent chemicals of concern, the recommended test method for each specified chemical, and the recommended reporting limit for the chemical analysis: | Emergent Chemical | Acceptable Test Method | Reporting Limit | |-------------------------------|--------------------------|-----------------| | Perchlorate | USEPA Method 314.0 | 4 μg/L | | N-Nitrosodimethylamine (NDMA) | USEPA Method 1625 | 0.002 μg/L | | 1,4-Dioxane | USEPA Method 8270 | 2 μg/L | | 1,2,3-Trichloropropane | USEPA Method 524.2 | 0.005 μg/L | | Total/Hexavalent Chromium | USEPA Method 200.8/218.6 | 1 μg/L/0.3 μg/L | | Polybrominated Diphenyl Ether | USEPA Method 8270 | 2 μg/L | The chemical analysis must be performed by a California Certified Laboratory. Two attachments are enclosed for your information. The first is a copy of the June 6, 2003 letter from the California Environmental Protection Agency (CalEPA), expressing concerns about emergent chemicals and requesting your cooperation in this investigation. Enclosure 2 provides additional information on the various emergent chemicals. Please contact me at (707) 576-2653 or via Email at <u>Bargs@rb1.swrcb.ca.gov</u>, should you have any questions. Sincerely Stephen Bargsten **Environmental Scientist** SKB:js/SRNAAS emergent chemicals Enclosures: - 1. CalEPA Letter Dated June 6, 2003 - 2. Emergent Chemical Information cc: State Water Resources Control Board, Office of Chief Counsel, Regional Water Board Attorney Mr. Kevin Mayer, SFD-2, USEPA REGION 9, 75 Hawthorne Street, San Francisco, CA 94105 ¹ These test methods may require modification, e.g. selected ion monitoring, to achieve the recommended reporting limits. [&]quot;The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption. For a list of simple ways you can reduce demand and cut your energy costs, see our Web-site at: www.swrcb.ca.gov." ## State of California California Environmental Protection Agency ## **ENCLOSURE 1** Air Resources Board | Department of Pesticide Regulation, | Department of Toxic Substances Control Integrated Waste Management Board | Office of Environmental Health Hazard Assessment | State Water Resources Control Board | Regional Water Quality Control Board June 6, 2003 Mr. John Paul Woodley, Jr. Assistant Deputy Under Secretary of Defense for Environment Department of Defense 3400 Defense Pentagon Washington, D.C. 20301-3400 Dear Mr. Woodley: We are writing to seek the cooperation of the Department of Defense (DoD) in addressing perchlorate contamination at DoD's active, closed, and historic military and contractor facilities in California on behalf of my office, the California Environmental Protection Agency (Cal/EPA) and Cal/EPA's Department of Toxic Substances Control (DTSC) and State Water Resources Control Board (SWRCB). The potential sources of perchlorate contamination include facilities that manufacture, conduct research on, and use solid propellants for rockets, missiles, military ordnance, and pyrotechnics. Military and defense contractor facilities are among the known and suspected sources of contamination of this type. We cannot overstate the seriousness of this problem for the State of California. To date, perchlorate has been detected in more than 300 wells, including public water supply wells. The loss of drinking water supply wells to perchlorate contamination may leave parts of California without sufficient water for the summer months. In response to this crisis, the California Legislature is expressing its interest in finding the sources and solutions to these impacts to the State's water by holding hearings on the matter. Our efforts to address perchlorate contamination in California warrant a collaborative approach to this environmental crisis. Together, we need to identify sources of perchlorate contamination, coordinate research of treatment strategies and technologies, and eventually clean up both impacted drinking water and water used for other beneficial uses. Cal/EPA and its constituent boards and departments need to extend this coordinated approach to DoD to address perchlotate and other emerging chemicals of concern emanating from military properties. To that end, the Regional Water Quality Control Boards have coordinated with the SWRCB in preparing a letter to military installations in California requesting assistance in identifying, investigating, and cleaning up sources of The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption. For a list of simple ways you can reduce demand and cut your energy costs, see the Web site: www.flexyourpower.ca.gov 1001 I Street | Sacramento, CA 95814 Mr. John Paul Woodley, Jr. June 6, 2003 Page 2 perchlorate and other chemicals of concern on their properties. We have enclosed a copy of this draft letter for your information. We ask that you direct the installations and appropriate program managers in DoD to assist and cooperate in this effort. In addition, we understand that DoD conducted a national survey of perchlorate contamination on military facilities, and we would request the opportunity to review the results of this survey for installations in California. Both DTSC and SWQCB representatives are available to meet with you or your staff to further discuss this issue. Should you have any questions or need further assistance, please contact Mr. Frederick S. Moss, Chief, Office of Military Facilities, DTSC, at (916) 255-3750 or Ms. Lisa Babcock, Chief, Land Disposal Section, SWRCB, at (916) 341-5687. Sincerely, Winston H. Hickox Winston H. Hickox Agency Secretary Edwin F. Lowry Director Department of Toxic Substances Control Celeste Cantú Executive Officer State Water Resources **Control Board** **Enclosures** cc: See next page. Perchlorate (ClO₄) originates as a contaminant in the environment from the inorganic salts of ammonium, potassium, magnesium or sodium perchlorate. This pollutant is exceedingly mobile in aquifer systems. It can persist for many decades under typical groundwater and surface water conditions, because of its resistance to react with other available constituents. Perchlorate is among a group of unregulated chemicals requiring monitoring pursuant to Title 22, California Code of Regulations \S 64450. The California Department of Health Services (DHS) action level for Perchlorate is $4 \mu g/L$ N-Nitrosodimethylamine, is also known as NDMA (C₂H₆N₂O), a product from the decomposition of unsymmetrical dimethyl hydrazine, a component used in the production of rocket fuel (Aerozine 50). This chemical is used as an additive in liquid propellant fuel for rocket engines. NDMA is used primarily in research (NTP, 2000), but it can also be formed inadvertently in a number of industrial processes. NDMA is identified as a carcinogen under California's Health and Safety Code Section 25249.5, et seq., and the Safe Drinking Water and Toxic Enforcement Act of 1986 ("Proposition 65"). In addition, the USEPA identifies NDMA as a "probable human carcinogen" (USEPA, 1997). The California (DHS) action level for NDMA is 10 ng/L. 1.4-Dioxane is used as a stabilizer for chlorinated solvents or volatile organic compounds (VOCs), particularly 1,1,1-trichloroethane approximately 90% of the 1,4-dioxane produced. Releases of chlorinated solvents or VOCs may be a primary source of 1,4-dioxane in the environment. 1,4-dioxane has a high potential for entering the environment due to its volatility and solubility in water. Spent chlorinated solvents disposed of improperly can contaminate ground and surface water, and 1,4-dioxane has been detected in surface waters throughout the United States. Exposure to small amounts of 1,4-dioxane may lead to significant adverse health effects. The primary routes of exposure include inhalation, ingestion and dermal contact. USEPA has classified 1,4-dioxane as a Group B2, probable human carcinogen of low carcinogenic hazard. The California (DHS) action level for 1,4-Dioxane 2 μg/L. 1,2,3-Trichloropropane (TCP): This chemical has been used primarily as a solvent and extractive agent. As a solvent, it has commonly been used as a paint and varnish remover, a cleaning and degreasing agent and a cleaning and maintenance solvent. TCP is not a naturally occurring chemical. Releases to the environment are likely to occur as a result of its manufacture, formulation, and use as a solvent and extractive agent, paint and varnish remover, cleaning and degreasing agent, cleaning and maintenance reagent, and chemical intermediate. TCP is also used as a pesticide in the formulations with dichloropropenes in the manufacture of D-D, a soil fumigant. 1,2,3-Trichloropropane (TCP) is reasonably anticipated to be a human carcinogen based on sufficient evidence of malignant tumor formation at multiple sites in multiple species of experimental animals. The California (DHS) action level for 1,2,3 TCP is $0.005 \,\mu\text{g/L}$. Hexavalent Chromium: This chemical is a dissolved heavy metal that is or has been used in industrial processes, such as metal plating and as a corrosion inhibitor in cooling tower water. Chromium VI is a known human carcinogen. Chromium VI detection in drinking water wells has resulted in well closures. There is no Federal or State regulatory standard for chromium VI. However, California Senate Bill 351 proposes to have one in place starting January 1, 2004. For now, the regulatory standards being used apply only to total chromium, the combined concentrations of chromium III and chromium VI. The risk-based California drinking water standard or maximum contaminant level (MCL) of 50 μg/L has been established for total chromium (chromium III and chromium VI). <u>Polybrominated Diphenyl Ether (PBDE):</u> A family of flame-retardants used in polyurethane foam, textiles, and plastic electronic casings. This chemical bioaccumulates in marine mammals, birds, and humans. No actions levels are currently available.